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Estimation of the potency of a given reagent by means of its action upon living
matter is the purpose of biologic assay. Test designs and methods of evaluation
of results have been developed extensively through collaboration of biologists

1 Presented at a meeting of the Eastern New York Branch of the Society of American
Bacteriologists, Albany, N. Y., November 30, 1945; Abstract in Annual Report of the Divi-
sion of Laboratories and Research, New York State Department of Health, 1945, p. 20.
A condensed version appears as part of a chapter on biologic assay in the third edition of
the Standard Methods of this laboratory (5a).
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and statisticians. Methods of estimation of median-effective dose2 (M) have
been a critical feature of many systems of quantal assay, where the response of
test-individuals is all or none. The present article describes a method of moving-
average interpolation to estimate M from the assay data. Section headings
and table of contents may serve as a guide to information essential to its actual
use or to an understanding of its fundamental character and relation to other
methods. Fine print has been used where discussions serve more as amplifica-
tion or aid to a careful study than as development of the main themes. On
account of the relative simplicity of assumptions and calculations involved, the
present method may be preferred unless the use of some other method in a given
situation can be justified by improved precision or by permitted technical
economies. It is in this sense that moving-average interpolation is suggested as

a basic method, not in the sense that it is more elegant aside from this dual sim-
plicity. Attention is directed also to judgment of possible influences of choice
of test-plans upon precision.

INTRODUCTION

In biologic assay based on quantal, all or none, response it has been found
widely advantageous to use a sequence of doses (D,) in geometric progression,
for i = 1 , h, each administered to a given number ni of subjects (such as
enimals or eggs); and it seems preferable to plan to have the same number of
subjects in each case, n, = n. In each case the number r, that respond critically
may be tabulated, against the corresponding dose Di in ascending order of mag-
nitude. In any case the n, subjects and results of administration of the dose Di
are considered as a sample from a hypothetical universe of all possible individ-
uals of the sort (respectively subjects or results) presumably obtainable by

2The writer's attention has been called to the unfortunate fact that M has beenwidely
used with a different meaning elsewhere in the literature on bioassay, as by Gaddum (22)
to represent the logarithm of the ratio of two potencies. To facilitate the present discus-
sion, in describing the logistic relation, we here employ M, D, p, and G respectively where
Thompson and Maltaner (7) and also Kent et al. (9) used K, x, y, andh or 1/n, and where
von Krogh (2) used k, x, y, and1/n.
- It is much more convenient here to use M to denote the median-effective dose than
alternative notations such as EDs0. Moreover, this is in accord with the notation em-

ployed in the chapter on biologic assay in the Standard Methods (5) of this laboratory
which also employs confidence ranges for the median M with the same notation used in
their original development (36) in a form yielding certain exact probability statements,
spcific confilence that any given percentile of essentially any universe lies below the kth
observation in ascending order from a random sample of aggregate number n. The article
has been discussed in a review by C. C. Craig (39a). Use of any other symbol here instead
of M would seem to place an unwarranted burden on cross-reference. Furthermore, M
for the median occurs in many statistical texts, e.g., Rietz (29), Camp (40a), and Rider
(28); others employ more cumbersome symbols, such as Mi, Md, Med, or Q2.

It issuggested that anitalic or script L orX might be used for the logarithm of the ratio
of two potencies instead of Gaddum's M, or ascript M be used for the median or median-
effective dose instead of the present M, if economy demands single-lettered representation
of each in the same discussion. The second alternative seems less attractive since the sym-
bols do not suggest their meaning.
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more extensive experience. Such a universe is conveniently called the sampled
population, usually considered as having an infinite aggregate number. Let
p,i ri/n,, and p5 be the hypothetically unknown true probability of critical
response to the dose Di for the sampled population. Then, the usual immediate
objective in such a bioassay is to estimate the median-effective dose M; defined
as a dose such that, if Di = M, then pi = 0.5 (i.e., M is the dose that should be
expected to yield a 50-per-cent response; for example, the LD)).2
For convenience in discussion, let the hypothetical curve of points (log D, p)

be called the fundamental curve; and consider its hypothetical graph to have logD
as abscissa and p, the corresponding true probability of critical response, as
ordinate. If some function of p is used instead as ordinate, say T(;), let the
corresponding points and curve be regarded as transformed from the fundamental
coordinate system (log D, p); consider experimental points (log Di, pi) as like-
wise transformed to points (log Di, T(p;)).
The usual purpose of such a transformation is to straighten the fundamental

curve so that a straight line may be fitted to the transformed points and M be
estimated by M' from the point (log M', T(o.5)) on the fitted line, corresponding
to p = 0.5. The possibility of a gain in power of estimation by such methods is
obvious. However, there is imminent danger that tendencies toward biased
or erratic estimates may be induced by mistaken assumptions about the form of
the fundamental curve or by the technics used for curve fitting. Even for no
other purpose than to serve as a basis of comparison, it would be advantageous
to have available an objective, unbiased method of estimating M, free from
assumption as to the precise type of fundamental curve involved, but capable of
taking into account more of the data than that from successive doses where pi
and p.+, straddle 0.5. It would seem wise to choose such a method as basic
(i.e., used as a basis of comparison of other methods under consideration),
at least in situations where there is so little information about the form of the
fundamental curve as to make any assumption about it hazardous. If calcula-
tions involved in the basic method were much simpler than those required in
some rival method, then the latter should bear the burden of proof that any
expectation of improvement it could offer would be worth the added effort.
The purposes of this communication are: to present such a basic method with

formulas for simple direct calculation of log m as an estimate of log M, to show
(in Appendix) how the variance and standard deviation of log m may be esti-
mated from an individual assay experience in default of a broader basis for their
estimation or, for purposes of comparison, to examine some of the characteristics
of the present and other methods that may influence a choice among them in
view of other conditions governing a given assay system, and to illustrate use of
the present method in comparison with certain others on a body of data that
has been presented independently for a like purpose. The proposed method
is founded upon a well-known system of graduation by so-called moving averages
followed by interpolation, all effected by use of a relatively simple formula in
conjunction with a simple test of data under consideration to indicate whether
the result will be an interpolation (as desired) or an extrapolation, if a given
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range is used as a basis for the calculation. A preliminary discussion of other
methods is given below as well as an outline of test plans and sampling technics
to furnish a background -and foundation for development of formulas and dis-
cussion of the relative precision to be expected. Random and stratified random
sampling technics are outlined, that are applicable not only to quantal assays
but to other assays, which may be called gradational.

In use of methods of estimating M by fitting a curve of given type, the moder-
ate asumption is usually implied that with a suitable limitation of range
(O < a :i fp : , < 1) the given curve-type so nearly approximates the form
of the fundamental curve as to make a satisfactory substitute under the circum-
stances. Two curve types, the logistic and the integrated normal, appear to have
been most favored. Winsor (1) has shown that either may be fitted to the other
so well over the ranges usually employed in bioassay that it would ordinarilybe
difficult to discriminate between them on the basis of goodness of fit to experi-
mental data and usefulness as a means of estimating M.

Complement-Fixation Assay Using Logistic Function. von Krogh (2) used

the logistic function and a transformation, T(p) = log p
, to the coordinate1 -

system (log D, log 1 ) to represent the curve of hemolysis of red blood cells,

finding that experimental data yielded points in the transformed system that
lay approximately on a straight line,2
(i) log D = log M + G*log [p/(1 - p)].

Obviously, this relation is independent of the base of the logarithms; for the-
oretical discussions the base e is more convenient, but for calculations the base
10 may be used. Iit any case we may convert from one form to the other by the
well-known identity, log,x = log1ox-log,10 - 2.30259 log1ox. Relation (i)
has been used as fundamental curve in evaluation of bioassays (3-10, 38) that
employ such hemolysis as indicator in the titration of various antigen-antibody
aggregates (or either component in the presence of a maximally reactive amount
of the other) by means of their complement-fixing ability under prescribed
conditions-the unfixed residual complement acting as the hemolytic agent on
the previously sensitized cells. The total number (n) of cells used in each case
is large (roughly estimated by Elizabeth and Frank Maltaner as about 125 mil-
lion in their work and by Kent as about 100 million in his work with Bukantz
and Rein (9)); p is estimated colorimetrically, and a restricted range for p is
specified as admissble for use in evaluations.

It might at first glance be supposed that the random samapling errors in p would be a

dominant influence and that therefore the linear relation (i) should be fitted so as to mini-
mise a weighted sum of squared deviations of log [p(1 - p)] from the fitted line. However,
by well-known relations the standard deviation of p (with all else the samae in random
samping) would be VP(1- /n and twice this cannot exceed l/Vn ; 0.0001 for n 2 100
million. Accordingly, this source of error would appear to have a negligible rather than a

domnnt influence (with deviations of p from p numerically less than 0.0001 in nineteen
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out of twenty trials). Indeed, p is estimated in most routine tests by visual comparison
with standards to the nearest 0.05 or, as in the work of Kent et al. (9), photoelectrically to
about the nearest 0.01. Errors in measuring reagents may well exert a greater influence
on the results (12c). Thus the procedure they employed,min Zing the sum ofquaread
deviations in log D, should not be rejected on this basis. The writer has recom-
mended to Mr. Kent, the Maltaners, and Doctor Rice, well-known methods (10a) of sim-
plifying the calculations and of relatively simple extension to the case where a family ofk
parallel regression lines are fitted tok sets of data such as those obtained in the experiments
of Kent et al. (9). However, it is interesting to calculate the regression lines fitted indi-
vidually to eachset tosee what variation in slope occurs, and likewise to compare the

results of fitting of straight lines by inspection from agraph in the transformed coordinates
(the technic actually used in most of the earlier work).

Now, the purpose of Kent, Bukantz, and Rein was essentially to develop
more convenient and precise graphs to be used subsquently for estimation of
M from the value of p obtained in a single hemolysis test with a given dose of
complement Din a domain where the slope G of the regression lines (i) could be
considered approximately constant. This situation is realized in complement
titration (where antigen, serum, and antibody are absent) and in the case of the
system investigated by the Maltaners (6) in which egg albumen was used as
antigen. Thus relation (i) withG evaluated in previous experience could be
used directly or in a graph or table to give M from the amount of complement D
used and the degree of hemolysis p that was observed to result in the conven-
tional test. Kent etal. rejected results where p lay outside the interval (0.2,
0.8) but studied relative errors both within and without this interval in formal
application of their method. With restriction of p thus, it appears (in their
table 6) that for estimation of M the standard deviations were about 2 per cent
or less. Thus far we may suppose simply that M and D are expressed in the
same arbitrary unit ustem. However, it is convenient for many purposes to
take the arbitrary unit so that M = 1 in the case of complement titration.
The volume of a given complement preparation that corresponds to one arbi-
trary unit is estimated by a preliminary or simultaneous test or both.
With other antigen-antibody systems such as those designed to study reac-

tivity of tuberculous, syphilitic, gonococcal, pneumococcal, or viral antisera
with homologous antigens (4, 5, 8, 10) an additional difficulty appeared. Thus
it was found with the syphilitic system that with a given amount of serum and
the optimal amount of antigen a relation of form (i) was approximated in all
titrations with various doses D but that the slopes G of the regression lines
varied greatly, and approximately systematically as a function of M. The
writer's first contact with these investigations was when Dr. Frank Maltaner
asked for help in solving the problem: given a smooth graduation curve to repre-
sent the dependence of G on M, and that for a given M relation (i) holds as
stated above, how can the unknown M be estimated from the degree of hemolysis
p observed in a single test employing a given amount of complement D. A
graphic method for solving this problem was developed (7) and used to construct
graphs and tables for each of the systems investigated, so that the appropriate
graph or table could be entered with the given values of p and D to obtain the
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required value of M directly. This method may be designated briefly as the
modukation method with the intention of suggesting that it takes into account the
gradual variation in G.

The original article (7) shows how ratio tables may be constructed so that data from
tests with two reaction mixtures (e.g., one being a complement or aserum control) and hav-
ing D and p values respectively (Di , pi) and (D2 , P2) may be applied to an appropriate
table (for D2, DI) making a cross entry with P2 and pi to find directly the ratio I =

M2/M1. A number of tables so constructed were published (4) prior to the method
itself. Their form was made to accord with that customary in reporting routine results
with a given specimen as the ratio I with M2 from a test with optimal amount of antigen
and M1 without antigen. Possibly this custom is only a temporary expedient pending
further investigation; but it has been used because it was believed (3, 4) that to a great
extent the anticomplementary activity exhibited by certain sera would have a roughly pro-
portional effect on complement whether antigen was present or not. However, the issue
is not clear (38).

The egg albumen system (as has been mentioned) gave a constant G, and so

did the pneumococcal system at 370 but not at 30 to 60. In that case and in
all other systems investigated G was found inconstant but largely dependent on

M, though differently in each, but permitting application of the modulation
method. Whether or not estimates of M obtained on this basis furnish a useful
measure of something must rest upon demonstration with each antibody-antigen
system. However, all of those investigated yielded in this way values for M
that were found approximately linearly related under given conditions to the
relative amount of either antigen or antibody in the reaction mixture if the other
agent was present in an approximately maximally-reactive amount. This
furnished a justification for use of the estimation method with these systems.
Recent investigations byRice with the pneumococcal (8, 38) and vaccinia viral
(10) systems afford examples. For some time attention has been focused upon
improvement of reagents as in use of the pure substance cardiolipin in tests for
syphilis (41, 42).

Some estimates of reproducibility of the ratio in routine tests have been made by con-

structing confidence ranges for the relative numerical discrepancy = 2(11 - 12)/(I1 +12),
where I,

2
Ih denote replicate values of I obtained in tests with the same specimen (as

in serum tests for syphilis), the replicates being either simultaneous with the same reagents
or obtained on different days with different reagent preparations. The statistical analysis
was based on methods described elsewhere (36, 46, 47) to obtain from sample experiences
values of ap such that the probability of encountering a value of 6ap in any given future
test under the same conditions was P. Estimates of6.5 andao.i were obtained for in
different ranges in the test for syphilis and found to be nearly the same. The estimate
from a pooled experience with 268 pairs of nonsimultaneous observations gavebo. - 8
per cent and o., 25 per cent. For simultaneous replicates a sample of 80 pairs gave
So.6 5 per cent and Bo.i - 16 per cent.

Some Characteristics of Other Assay Methods. A review of other literature on
biologic assay has been presented by Bliss and Cattell (11) with a discussion of
some of the fundamental concepts, which are also the subject of an interesting
article by Irwin (12a) and discussion that followed its presentation (12b);
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especially noteworthy is an appended contribution by Neyman (12c). For a
given value of p, Bliss defined the probit as five plus the equivalent normal
deviation (with unit standard deviation); the transformation, T(,) = probit p,
converts the integrated normal curve to a straight line that passes through the
transformed point (log M, 5), as probit 0.5 = 5. This, or the corresponding
normal deviate transformation, has been applied extensively to assay systems
where n is large (11, 13), and has been modified (14-16) for use where n is small
(in which case pi = 0 or 1 is not uncommonly encountered). However, in the
latter case the calculations required in estimation of M are somewhat difficult,
involving successive approximations with tentative regression lines fitted by a
method of nammIum likelihood. The logistic function has been applied instead
by Wilson and Worcester (17, 18). using maximum likelihood, and by Berkson
(19, 20) using a method of weighted least squares for curve fitting. In terms of
the natural (base e) logarithms Berkson (19) defines logit p = log[(1 - p)/p] =
-log/(1 - p)], transforming to logits prior to the curve fitting (the negative
of von Krogh's transformation (2)). He gives some comparisons between uses
of the logistic and of the integrated normal curve in applications to the same data
in a variety of situations, the comparisons uniformly in favor of the logistic.
Occurrence of values of pi equal to zero or one is a source of difficulty in fitting
either the integrated normal or the logistic curve to data, as the transformation
to either probit or logit gives infinite values in these cases. As a result, a special
treatment is employed in the form of an adjustment of such data.
Some attempts have been made to develop methods of estimating M that

avoid the definite assumption as to the fundamental curve form and attendant
difficulties of curve fitting, but emphasis has been placed mostly upon facility in
calculation; most prominent have been the Karber (21-24) and the Reed-Muench
(25) methods; Apparently, the most generally applicable method is the obvious
device of simple interpolation between successive values of pi that happen to
straddle 0.5. This is included as a special case (K = 1) in the moving-average
method to be presented. However, this simple procedure makes no use of other
assay data except in scanning, and thus in practice appears inefficient. Irwin
and Cheeseman (23, 24) have used data of Mrs. Joyce Wilson and Professor
Topley, given in the present table 1, to compare the method of Bliss (14, 15)
with that of Kiarber, which they call respectively "the exact" and "the approxim
mate" method. However, Karber's method is open to several objections; it
may be shown to lead, even under the most ideal conditions, to the paradoicail
conclusion that the approximate median-effective dose of any toxin is none
whatever, unless it is assumed that subjects given very small doses of toxin (or
none) would bear charmed lives during the experimental interval of observation.
In general, it seems impossible to avoid some such vitiating feature with any
suggested method that does not include an objectively applied restriction of
the range of values of Di that are allowed to influence the estimation. Although
any good method may be made ineffective by an inadequate experimental plan,
too meager data, or extraordinarily erratic experimental results, the procedure
should otherwise lead to unbiased unequivocal estimates. Reed and Muench
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(25) warned against effects of failure to restrict range properly, but their method
has been abused regardless of the warning. Furthermore, it can be demon-
strated that the Reed-Muench method, even with the absolute antithesis of
erratic data (a uniform trend), has an unfortunate predilection to yield biased
or equivocal estimates. Accordingly, neither the Klirber nor the Reed-Muench
method meets the basic need for an objective, unbiased method of estimating
M, free from assumption as to the precise type of fundamental curve involved,
but- capable of taking into account more than the data from successive doses
where corresponding values of pi straddle 0.5. Not only is this need met by
the proposed moving-average method; but in simplicity of calculations it appears
to be best, except that Karber's method may be regarded as a degenerate form
of the moving-average method and, accordingly, a much simpler calculation
could be used instead of that traditionally employed (21, 23). Further dis-
cussion of these relations will follow a consideration of experimental plans in a
quantal assay and adoption of some conventions as an aid to discussion.

EXPERIMENTAL PLANS

Fundamental Curve and Sense Convention. In any quantal assay system to
be considered, it is assumed that the sampled population may be regarded as
infinite and that p, the tru probability of critical response to the dose D in
the sampled population, is either an increasing or a decreasing function of D
within a convenient range of dosage including the median-effective dose M.
Unles otherwise stated, no other specific knowledge of the form of this function
is asumed. The fundamental curve is treated as if existing though unknown,
formed from the hypothetical points (log D, p) with log D as abscissa and p
as ordinate. Strictly spealing, the curve is only a fiction, convenient to use in
discussion of the population sampled in any given assay test or set of tests such
that the subjects may be considered as drawn from the same population.

Even in ue of the same colony of potential subjects for test, it may not be advisable to
make such an assumption if a considerable time lapse or other possibly disturbing circum-
stince intervenes between tests; perhaps the fundental curve should be considered as
altered. Age increase alone may alter potential susceptibility of individuals, and thus the
cutve may be changed. To say that the fundamental curve is different implies, of course,
that we are dealing with a different sampled population in the idealized sense intended.
such posfible changes in curve form through seasonal variations, generation peculiarities,
and scular trends might make it practically impossible ever to have enough information
about the fundamental curve to be useful in curve fitting.

The critical response may be defined in any assay arbitrarily as either the
occurrence or non-occurrence of a specified result to individuals (for example,
death or survival), obviously without affecting the value of the median-effective
dose M. Accordingly, to fix the ideas, a sense convention will be adopted: it
will be assumed that the choice is so made that p is an increasing function of
log D (necessarily then of D also) at least within a restricted range as mentioned
above. It is easily demonstrated as a check on essential formulas (and tests for
interpolation) that they hold equally if q is substituted for p and vice versa and
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si for ri and vice versa, where q = 1 -p and s; = ni - ri. This shows the
sense convention to be merely a convenience in discussion.

Preliminary Conditions and Organization of Tests. In any assay system
a suitable choice of species, and conditions of breeding, maintenance, and prepa-
ration of subjects for tests are of prime importance, as well as restrictions that
may be made with regard to certain attributes such as age, weight, apparent
conditon, and sex; the possibilities of attainment of greater assay precision by
modification of such characteristics of a test plan are discussed by Bliss and
Cattell (lla). For any given set of tests wherein conditions are to be made as
comparable as possible aside from such specifications, it is best to use samples
in each case drawn in an unbiased manner from a pool of prospective test-sub-
jects that have been selected as suitable in accord with the specifications. Sup-
pose that there are H ultimate categories (cases), possibly testing various
reagent preparations in a given test plan; and suppose that n test-subjects are
required in each case. Then the pool should contain at least n*H subjects;
and H cells should be available, numbered 1, *., H, to correspond to the H
cases so that n subjects may be placed conveniently in each cell as they are
assigned by the sampling procedure. Two systems of unbiased sampling are
given below, based on principles and terminology discussed by Neyman (26a).
Random Sampling (Unrestricted). An aggregate of n*H tags, numbered

n each 1, * * , H, but otherwise alike, are placed in a bowl, shuffled, and indis-
criminately withdrawn one at a time without replacement as an individual is
taken from the pool and assigned to the correspondingly numbered cell. The
term random sampling implies unrestricted random sampling unless otherwise
indicated.

Stratified Random Sampling. Many systems of stratified random sampling
are possible; for example, the H subjects in each stratum may be selected in
ascending order of weight or other attribute from the pool, or each stratum may
contain individuals alike in sex, or characterized by certain combined attributes.
Instead of the preceding technic, a pool of n-H subjects may be initially sub-
divided into n arbitrary subclasses, called strata. Only one tag for each number
(1,*I* , H) is placed in the bowl and these are withdrawn at random, as above,
without replacement as the subjects of any one stratum are assigned to cells
corresponding. After the random sampling of the first stratum, all tags are
returned to the bowl and the sampling process is repeated successively with the
other strata. In the end, each cell has n subjects, one taken at random from each
stratum. This is called a stratified random sample. If the strata are simply
formed by the order of withdrawal of subjects from a general pool of n.H or
more, obviously the strata need not be preformed. This may be called simply
stratified sampling.

Difficulties in probability calculations, sometimes apparently insurmountable, are in-
troduced if an unrestricted random sample is not employed, but a stratified random sample
may be preferable in some situations. Thus in dealing with a pool of animals, some of which
have greater ability to elude the sampler so that other less agile subjects are sooner picked
for distribution in the cells, the simply stratified sampling technic would assure having
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one of the first H in each cell and likewise one of each successive set of H animals so taken.
Such agility, if related to variation in resistance to the agent one way or another, or sus-
pected of having some relation, might throw the weight of judgment in favor of stratifica-
tion. In general, the resultant precision should be as good or better if stratified rather than
unrestricted random sampling is used. Consideration of what forms of stratification
should be tried in any given situation, and investigation of the relative merits of rival forms
is a possibly important aspect of any problem of bioassay that is usually ignored entirely.
Even worse, a bias may be carelessly or inadvertently introduced in the sampling technic;
for example, by the erroneous procedure of assigning the first n animals captured to the
first cell, etc., in a fond belief that a random sampling would result.

Simultaneous Comparison of Standard and Unknown. The usual procedure
in either quantal or gradational assay is to use a standard reagent to furnish
a relative value for the unknown. The standard usually should be a preparation
of the same active agent, such as a standard antipneumococcus serum of the
same type as another preparation that is to be tested. The usually great im-
portance of simultaneous comparisons of this sort deserves the emphasis that
it has received in the literature (5a, 11, 12). It is rare that the biologic system
on which the reagent acts may itself be used satisfactorily as a standard. How-
ever, a striking example of this is afforded by a quantal assay employing mor-
tality of the eggs of Drosophila melanogaster as a biologic indicator of x-ray
dosage (43). An interesting contrast is furnished by the gradational assay sys-
tem employing prolongation of the larval stage of the Drosophila by x-ray
irradiation (31-33), which system affords an illustration (5a) of several types of
difficulty to be encountered in either quantal or gradational bioassay.

In the preceding scheme of sampling it may be supposed that usually some of
the H ultimate categories (cases), corresponding to cells (cages) each containing
n subjects, are to be reserved for use of the standard preparation. In the case
of the data to be discussed below (given in table 1), there are ten replicate assays
run simultaneously with the same agent; but these are treated separately in
estimation of M, as if they were all made on different preparations (or prepara-
tions not known to be the same). Any one of these assays (A' to K') could be
considered as the standard preparation; but we need not be concerned primarily
with comparison of standard and unknown for the purposes of the following
discussion, which is directed toward consideration of variation in such estimates
of M employing a given method, and cross-comparison of estimates obtained by
different methods from the same data.
The purpose is similar to that of Irwin and Cheeseman in employing the same

data (23, 24). It seems obvious that such a purpose of comparison of methods
applied to replicate assays would not be served by any attempt to pool informa-
tion from all the assays (A' to K') in order to estimate some useful characteristics
of the fundamental curve that might then be applied to the individual estimates.
However, it is hoped that the present use of a particular test plan and basis of
comparison will not appear as a detraction of other methods which may permit
direct comparisons of relative potency (possibly without reference to median-
effective dose) or abbreviation of tests as in the complement-fixation systems
discussed above and in other assay systems (45).
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DEVELOPMENT OF FORMULAS FOR INTERPOLATION FROM MOVING AVERAGES

Now, consider certain formal relations that lead to a development of formulas
that yield by simple calculations an estimate m of the median-effective dose M.
Suppose we have data in the previously indicated form of associated values of
Di and ri for a given number ni of subjects in each case, usually with ni = n
resembling any column A' to K' in table 1. Assume that these have been ob-
tained in accord with a suitable test plan with a set of h doses (Di) wherein
D= R D _1and R is a constant greater than one (i = 1, , h;j = 2, ... , h).

TABLE 1
Deaths (ri) in ten differently labeled samples of mice injected with given doses (Di) of the

same toxin preparation*. L = log Di
iDi AI B' C' Do E' 1' 0' El J' K'

mg

1 2.7959 0.0625 1 1 0 2 0 0 0 1 0 1
2 1.0969 0.125 2 2 0 0 0 0 0 3 0 0
3 1.3979 0.25 3 1 5 5 3 2 4 2 3 5
4 1.6990 0.5 5 5 4 5 4 1 3 5 3 4
5 0.0000 1.0 5 4 4 5 5 5 5 5* 2 5
6 0.3010 2.0 5 5 5 5 5 5 5 5 5 5
7 0.6021 4.0 5 5 5 5 5 5 5 5 5 5

* Note: Data of Wilson and Topley used by Irwin and Cheeseman (23). In another
article Irwin and Cheeseman (24) give the same table except for an apparent typographic
error giving 2 instead of 5 for the third entry from the bottom and right. Five animals
were used in each case (n = 5), taken at random from 350 male mice from normal stock
(weights between 28 and 32 grams). Ten replicate sets (labeled as indicated at the column
heads, except that primes have been added here to avoid confusion with other symbols)
were injected in each case (i). Any one of the columns (A' to K') corresponds to an assay
test. The composite test-plan has h = 7, H = 10-h = 70, n = 5, n-H = 350, R = 2, and
d = log 2_0.30103. The critical response was death within a definite period of observation
(four days after injection).

Thus the doses form a geometric progression, and their logarithms form an
arithmetic progression with a constant difference between successive values
that we will represent by d. For convenient abbreviation, let
[1] Li = log Di ; and, accordingly,
[2] d = Li-L,1 forj = 2, , h; whence d = log R and

Li+u = Li + d-u.
Subscript Convention. For the sake of brevity, in the preceding and other expressions

where the implied meaning is obvious, let any symbol used in a subscript without an accom-
panying fuller definition be allowed any meaning consistent with prior definitions of other
symbols in the relations involved. Thus obviously, u, above, is an integer greater than -i
and not greater than h - i. Accordingly also, it is unnecessary above to define j by the
expression j - 2, *-.-, h; indeed, i could have been used instead of j throughout, as the
equations above in which j is employed as a subscript are obviously intended to indicate
relations between things already defined, not to define something denoted by Lo nor Do.
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Common (base 10) logarithms are intended in these relations unless otherwise
implied. However, it may sometimes appear convenient to use logarithms to
the base R instead; as then d = logRR =1, and if one of the values of Li is an
integer in this system then all are integers in a natural succession. Thus in
figure 1 the data of table 1 are represented graphically by circled points with
pi = ri/ni as ordinate and log2Di as abscissa for i = 1, - * *, h in each of ten
diagrams corresponding to the columns A' to K' of the table.
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FIG. 1. Illustration of Moving-Average Estimation of Median-Effective Dose. The circles

represent pi = ri/n from the data of table 1, the triangles are corresponding moving aver-
age of three successive values of pi, their join-lines form a polygonal curve that crosses
the 0.5-horizontal at the median-point estimate, whose abscissal value is log2 m. The mean
log2 m _-2.123 and the standard deviation estimate s' _ 0.588, corresponding to a per-
centage deviation in m of -33 or +50.

Illustration of Graduating Influence. Obviously, an attempt to estimate the
median-effective dose M by simple interpolation between the circled points of
figure 1 would lead to erratic and occasionally equivocal results, as may be seen
by joining successive circles by straight lines in each graph. If instead we take
the triangle-enclosed points in these graphs, which have respective arithmetic
means of three successive values of pi as ordinate and the mean of the three
corresponding values of Li as abscissa; the join-lines as given in the graphs indi-
cate an ironing out of some of the erratic variations. Where such a join-line
crosses the p = 0.5 horizontal, also illustrated, the intersection abscissa is log m
which is the estimate of logM in this case (for moving averages of spans of three
successive values of pi). However, calculation of logm algebraically is preferable
and even simpler.
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BSTIMATION OF MEDIAN-EFFECTIVE DOSE

General Notions of Moving-Average Interpolation. General formulas for
interpolation from moving-average points for spans of K successive values of pi
are readily developed from definitions of successive points designated by (L', p')
and (L", p"); actual graphic constructions are not required. For brevity let
b -a + K, and let

p. +. +Pb-1 and
K

[3]
P a.+i + _+Pb

K

and correspondingly let

Li L,, + +Lb-= loggD', andK
[4]

L" = La.* + R + Lb = log D"K

If p' $ p" and p' . 0.5 . p", then it is possible to estimate logM (the value
of log D for p = 0.5, as previously defined) by a simple linear interpolation, as
follows:

Let log m denote this estimate, then

[5] log m =L' + df, where= 0;5 P .

Calculation of log m may be simplified by use of general formulas, or simplified
formulas in given situations.

General Formulas for log m. Obviously, relations [2] and [4] give L' -
La + d. (K - 1)/2; whence relations [3] and [5] give the general formula,

log M c log m =La+ d(K - 1) + d.f, where

[61 f Pa - - Pb-1)/(pb - Pa) forpi= r,/n;,

which reduces to f= r- - -rb )/(I (n-ra) for ni = n.

Obviously, from the definition in relation [5], the result is an interpolation if
and only if the fraction f lies in the unit interval (0 _ f < 1). This is equivalent
in the latter form (for ni = n, the usual condition of the test plan) to the re-
quirement that rb # ra and that the r-trial function defined as ra + - - * + rb-
(nK/2) lie in the interval (ra, rb); and it is convenient to run down the conven-
tional column of r-values, summing comprehensive spans of K + 1 successive
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values and noting when this sum minus one-half nK is equal to the first or last
value of r in the summation or between them. Then the index of the first value
of r is a in the formula above.

Where the values of ni are not all alike, a corresponding test (valid in general) may
be made: that p. i" pb and the p-til function, p. + - * - + pb- K/2, lie in the interval
(p., pb) is a necessary and sufficient condition for the result of application of formula [6]
to be an interpolation. It should be noted that the comprehensive (total) index span of
data used for the estimation is K + 1, one more than the moving-average span K.

As mentioned previously, it is readily verified that transposition of pi and qi and of r;
and 8i in formula [61 gives the same value of log m. The trial functions and correspoding
intervals used in the test for interpolation may be altered but correspondingly so that the
test yields the same conclusion. Accordingly, here as wil be found elswhere, the sene
convention about the fundamental curve is only an aid to discuion. Furthermore, d
need not be positive, and values of Di may be replaced in the protocol by values propor-
tional to their reciprocals (for example, by a corresponding sequence of dilutions of reagent)
provided that proper interpretation of the formal result is made. However, the conven-
tional meanin will be retained for the sake of clarity.

Simplification of Formulas in Given Situations. It seems advisable to fix K
on the basis of some experience with a given system, as well as n, d, and h in
the test plan, with care to reduce to a tolerable risk the chance of obtaining
results that are indeterminate; although there always is some risk of this with
any method of estimating median-effective dose from data of the kind considered.
Once any of the parameters d, n, and K have been fixed, relation [6] may be
simplified further by substitution of the given constants in the formula, and usu-
ally also by a collection of some terms.

Thus with the data of table 1, where n - 5 and d -'log 2_ 0.30103, if we decide to7use
K - 3 as illustrated graphically in figure 1, then we may first simplify relation [61 to

[6.11 logm =L + d(9) +d(7-5 -r;+j-r 4+2)

16.21 . logm La + 0.30103(1 + r;+s-r. )

Correspondingly, the trial function is r. + r.+1 + r.+2 + r.4,- 7.5 under the circumstances,
and its value must lie in the interval (r.,r+,) with r. # r*+ for the result to be an interpola-
tion, and this is also a sufficient condition.

Example Cdctions and Use of Trial Fundion. Consider the data of Column A'
of table 1. To try the suitability of a - 1 for interpolation by formula [6.2], we evaluate
the trial function as 1 + 2 + 3 + B-7.5 which equals 3.5, and as this Hes in the interval
from 1 to 5 (the first and last of the Bsuccesive values of r in the summation just given) we
know that an interpolation will be the result. It is readily verified that any value of a
greater than unity would not satisfy the trial-function test in Column A'. Next, taking
a - 1, we substitute the required values of r in formula [6.21 which gives, as L- Li
2.7959 from the table,

log m 2.7959 + 0.30103(1 + 75-1 -2 -3)

_ 2.7959 + 0.30103(11/8) 9 2.7959 + 0.4139 _ 1.210.
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ESTMATION OF MEDUIN-EFFECTIVE DOSE

Now, consider Column E'. Successvely testa 1,2,... , etc. With a 1the trial
function value is 0 + 0 + 3 + 4 - 7.5 - -0.5, obviously not in the interval (0,4). Trial
ofa - 2 gives instead 0 +8+ 4+ 5-7.5 -45,which is inthe interval (0, 5). Trial of
a -3 gives 3 + 4 + 5+ 5- 7.5 = 9.5,which is outside the interval (3, 5). Obviously,
greater values of a will not meet the test condition, and use of a - 2 is the only procedure
to yield interpolation by application of formula [6.2] to E'. Accordingly, as L - 1.0969,
we obtain the estimate

log m ' 1.0969 + 0.30103 (1 + 7.5 - 0 4)

_ 1.0969 + 0.30103(11/10) '-1.0969 + 0.3311 = 1.428.

Estimation of Variance and Standard Deviation. In general (27, 28) for any
variate X, if we have a random sample of N values (X,), where j = 1, - - * , N,
we denote the sample mean by X and let vx be the estimate of variance of X
in the sampled population, where X = (1/N) *2 Xi and vz = 2 (XI _ X)2/
(N - 1). The true variance of X in the sampled population is denoted by 42
and the standard deviation is its square root, a > 0. We let 4 = NVx
represent the estimate of standard deviation (the notation being in accord with
Rider's text (28)).

From Columns A' to K' of table 1 we obtain with K - 3, as indicated previously, the
following ten estimates of logM successively: log m - 1.210,1. 360,1.285,1.147,1.428,1.669,
1.428, 1.210, 1.624 and T.247. The mean value is approxtimately 1.361, and the standard
deviation of log m estimated by ;'o ., 0.177.

Another method of estimating alou . where extensive replicate assays are not
available is derived and discussed in the Appendix. The estimate may be made
from data of a single assay, but it is strictly applicable only where subjects are
obtained by unrestricted random sampling. Nevertheless, it furnishes an ap-
proximate indication of any gain or loss in efficiency by use of other sampling
technics; for example, if stratified random sampling technic is used, it should
lead to greater, if not equal efficiency (26a).

FEATURES OF MOVING-AVERAGE INTERPOLATION IN RELATION TO

OTHER METHODS

Comparison of Results by Other Statistical Methods. The data of Wilson
and Topley in table 1 furnish a ready basis for comparing estimations of log M
by certain formulas such as relation [6] with the results Irwin and Cheeseman
obtained (23, 24) from the same data by the method of Bliss (14, 15) and by that
of Karber (21, 22). By Bliss's method they estimated log (LDI)), log M in the
present notation, and obtained a mean value of 1.361 and standard deviation
estimate s' = 0.199. The results by the present method with a moving-average
span K = 3 compare favorably: mean = 1.361 and s' = 0.177. The results by
these and two other methods are indicated in table 2; but, for convenience, 1000
times the difference between the estimate of log M and 1.361 is listed in each
instance. Results by Kirber's method and by that of Reed and Muench are
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thus given. With the latter an abridgement to use of a total index span of four
was made, in order to correspond to use ofK = 3 for the moving-average method.
For each assay (A' to K') the relative order of absolute deviation from 1.361
is given in parentheses for the results obtained by the four rival methods, or
mean values in cases of a tie. The mean of these order-numbers for each method
is given also parenthetically at the base of the table.

TABLE 2
Differences times 1000 between estimates of log M and the arbitrary reference point, 1.361,

for the ten replicate assays of table 1 by different methods. The four estimates for each assay
are given order numbers in parentheses according to absolute deiation from the reference
point. Results by the first two methods are those of Irwin and Chee8eman (25, 24).

METHOD
ASSAY LABEL

BunKs Reed-Muench Moving Averag
(4-span) ~(K - 3)

A' -190, (4) -174, (3) -164, (2) -151, (1)
B' -20, (3) +7, (2) +37, (4) -1, (1)
C' +30, (2) +7, (1) -83, (4) -76, (3)
D' -262, (4) -234, (3) -214, (1.5) -214, (1.5)
E' +77, (4) + 67, (2.5) +37, (1) +67, (2.5)
F' +295, (1) +308, (2.5) +376, (4) +308, (2.5)
G'1+79, (4) +67, (2.5) -1, (1) +67, (2.5)
H' -199, (4) -174, (2) -189, (3) -151, (1)
it +311, (4) +308, (3) +282, (2) +263, (1)
K' -120, (4) -114, (2) -114, (2) -114, (2)

Mean 0, (3.4) +7, (2.35) -3, (2.45) o, (1.8)
8' 199. 190 198 177

Use of 1.361 as arbitrary reference point in computation of tho deviations might be
suspected of placing the other methods in an unfavorable light, but this was the mean
obtained by the moving-average and the Bliss methods. The order numbers would be the
same if the grand mean estimate, 1.362, were used instead or if the mean, I.358, from the
results with the Reed-Muench method were used. If the mean from afirber's method, 1.368,
were taken as reference point instead, this would affect the order numbers only in an inter-
change of one and two in the row for B', and the mean orders correspondingly by 0.1 as an
increase for the moving-average method-and decrease for that of Kirber.
Absolute deviations of estimates by the Bliss and moving-average methods for the same

assay (A' to K') are nowhere equal and favor the Bliss method only twice in the ten trials.
On the null hypothesis that the probability is one-half that the Bliss method would deviate
less on any given trial than would the moving-average interpolation (equality excluded),
that this should occur no more than twice in ten independent trials would have a probability
P = 56/1024 < 0.055. This is almost at the ordinary criticaLlevel of significance (P = 0.05);
moreover, the burden of proof in this situation lies on the opposite side. Thus the evidence
of Wilson and Topley's data would not warrant use of Bliss's method instead of the basic
(moving-average) method in the situation in question.

Comparison in Priniple with Karber's Method. Irwin and Cheeseman (23,
24), referring to the Bfiss method as "the exact" and to Karber's as "the approxi-
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mate" method, used the latter in quest of a less difficult means of estimating log
M; yet they conformed to precedent in use of an unnecessarily complicated
computation procedure suggested by Karber (21). As shown below, the same
result may be obtained more simply. However, it appears essential for con-
sistent use of the method to make a disagreeable assumption about the biological
system beyond the actual range of observations, namely, that for any dose Di
outside the experimental range on one side pi- 0 and on the other side p5i 1.
By the sense convention this would mean pi-0 for Di < Di, and p,-1 for
Di > Dh.

Tentatively suspend judgment of acceptability of the assumptions and disre-
gard the issue of interpolation or extrapolation. Then, in the present notation
the prerequisite assumption of Kiirber's method (for ni = n as usual) may be
stated as follows: there exist numbers, a and ,, such that ri = 0 for i . a and
ri = n for i > ,3; furthermore i may be considered as extended indefinitely in
either direction with the corresponding dosage values defined by the relation,
Di-R'-Do0. Then, for a < a and b B,we have r. = O and rb = n. Now,
for this case in relation [6] we have

log m = L. + d(K-k)-n (r.+1 + +rb(1),

if r= 0 and rb = n;

whence, as b _= a + K, relation [2] gives

[8] log m = Lb - d - d (r.+, + + nb1), if r= 0 and rb = n.

It is readily verified that this formula yields, with an indicated simpler computa-
tion, identically the same result as the method of KIirber (21-24). However,
as the risks of extrapolation are disregarded, Karber's method appears as a
degenerate form of the moving-average method, even if the special assumptions
are not challenged.

It is objectionable under some circumstances to extend K, the moving-average index
span, more than enough to provide a stabilizing influence on the estimates of log M. This
is discussed below and indicated by results in table 3. With regard to the prerequisite
assumption of Karber's method, it is obvious by use of relation [2] and simple rearrange-
ment of terms that with any a . a and b 2 3 in relation [8] the same value of log m is ob-
tained. Thus, provided this assumption is made, further extension of the index span
(K - b - a) makes no difference in the result. However, the extension may be so great
in any case that only extrapolation is possible, actually so six times in ten with the data
chosen for illustration by Irwin and Cheeseman (23, 24) as indicated in the last column
of table 3.
A questionable common practice in actual use of KArber's method if ri ' 0 is to take

a = 0 assuming ro = 0, or likewise if rA n then to take b = h + 1 assuming r,+i =n.
Objection may be raised against an assumption that values of ri for lower doses of toxin
than used in the actual experience would all be zero in a hypothetical extension of the ex-
perience in order to provide one of the conditions necessary to application of K&rber's
method. In the situation presented in table 1, this would amount to an assumption that a
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temporary (four-day) immortality would have been conferred upon any and all animals
injected in the prescribed way with a dose less than the least that was actually used. On
the other hand, if pi approaches a constant > 0 as i decreases indefinitely, use of Kirber's
method (formally equivalent to use of relation [81) with extension of the experience indefi-
nitely to include actual use of lower and lower doses DI-, for j = 1, - **, etc., and taking
a successively lower should lead to lower and lower estimates of log M with m approaching
zero as a limit. Otherwise stated, the median-effective dose of any toxin would always be
estimated as no toxin at all. It seems thus that an obviously absurd result is avoided in
practice only by failure to extend the actual experience to low enough doses to make the
great potential influence of the sum, r. + re-, + *+ ra-_ + ***, apparent. Such a

TABLE 3
Differences times 10(0 between estimates of log M and the arbitrary reference point, 1.361,

for the ten replicate assays of table 1 by the method of moving averages with various index spans
K; showing bias introduced with extrapolations and a counter distorting effect of substituting
ri = 0 instead of the known alues in the case of K - 6, an exaggeration of influences in KRr-
ber's method as used by Irwin and Cheeseman (58, 24) which is equivalent here to use ofK = 7
with the assumption that ro - 0 i8 applicable beyond the range of the experience.

K"ay---el t 1 2 3 4 5 6 6 7
(7i 0?) (re 0?)

Assay Label

A' -114 -114 -151 -189' -226' -264' -114' -174'
B' +150 +87 -1 -13 -1' -38' +67' +7'
C' -114 -114 -76 -38 +7' +7' +7' +7'
D' -114 -114 -214 -314' -415' -515"' -114' -234'
El -13 +37 +67 +67 +67 +67' +67' +67
F' +451 +388 +308 +308 +308 +308 +308 +308
G' -76 -13 +67 +67 +67 +67' +67' +67
H' -126* -114 -151 -189' -226' -264' -114' -174'
if' +338* +288* +263 +308 +308 +308 +308 +308
K' -114 -114 -114 -114 -151' -189' -53' -114'

Mean. +19 +22 0 -11 -26 -51 +43 +7
58' 213 183 177 206 233 261 159 190

Note: An asterisk indicates that a unique result was not obtained; the mid-range of the
calculated values is given. The single ('), double (') and triple ("') primes after numbers
indicate that the estimate was not found within the interpolation interval; but the shortest
possible extrapolation was used, requiring extension respectively to the first, second or
third interval beyond.

dilemma appears to confront any attempt to base a method of estimating median-effective
dose upon such assumptions about the true probability of critical response pi beyond the
range of experiment. It appears necessary to provide some equivalent of a limitation of
the range of values of Di that are allowed to influence the estimation, objectively applied
rather than as a fortuitous result of an obvious practical need for some limitations in any
experiment.

Extent of Moving-Average Span (K). The results given in table 3 serve to
illustrate the influence of choice of the index span of moving averages, taking
K = 1, * * , 6. For convenience, as previously, 1000 (log m - 1.361) is listed
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instead of log m. Use of K = 1 amounts to the same thing as simple interpola-
tion between successive values of pi that straddle 0.5, and whenever there is
more than one such pair equivocal results are obtained. These occurred in two
of the ten replicate assays (H' and J'); they are indicated in the table and are
apparent on inspection of the circled points of figure 1. Where a unique result
is not obtained, the midpoint between extremes of the equivocal values is given
in the table as indicated by an asterisk. With K = 2, the least span for actual
use of moving-average graduation, only one assay (J') gives equivocal values.
With K = 3 the results are all unique interpolations. If we take K greater
than this then estimation of log m is sometimes beyond the reach of interpolation
from the available data (table 1), but the least possible extrapolation is used.
This is indicated in table 3 roughly by single, double or triple primes to signify
respectively that extrapolation was required involving a reach to the first, second,
or third equal interval (of length d) beyond that corresponding to interpolation.
With K = 4 such effects are of a relatively minor nature, and are encountered
in only three of the ten assays (A', D', and H'). As K is increased beyond four,
extrapolation is required more frequently and appears to be more influential
in introducing bias into the mean estimates of log M; a trend toward lower mean
values of log m is noticeable. Precision, as indicated by the standard deviation
estimates s', also seems best with K = 3.

Extended K and Assumptions of Kdrber's Method. If the assumption were correct, as
made by Irwin and Cheeseman in applying Ktirber's method to the data of table 1, that
smaller doses such as Do 0.03125mg of the toxin preparation would have yielded no deaths
in response and thus rO = 0 in every assay (A' to K'); then we might use K = 7 as we have
already used K = 1, *-., 6. The results thus formally obtained by use of the reduced
form of relation [6] given in relation [8] for the special case (r. = 0, and r& = n) are neces-

sarily the same as those obtained by Krber's method, but are given again (table 3) to
emphasize a failure to find in this last member (K - 7) evidence of family traits apparent
in the six preceding offspring. A sudden reversal of the trend in mean log m is a striking
reult: having successively, with K = 1 a , 6, obtained mean values of 1000 (log m -

1.361) = +19, +22,0, -11, -26, -51; we obtain the value, +7, for K - 7 with the ques-
tionable assumption that we should have found ro = 0 throughout if Do had been used.
There is a corresponding reversal of trends in frequency and extent of extrapolation and
in the estimate 8' of standard deviation, all ostensibly favorable but damningly contrary
to evident family traits. In the next to last colulmn of table 3 are presented results of an
exaggeration of the suggested influence, obtained with K - 6 by substituting zero for the
actual values of r1 which is equivalent to assumption that ri = 0 throughout in ignorance
of the actual data (obviously false five times in ten).
The evidence suggests that apparently good results obtained by KErber's method may be

due to compensating errors of the sort introduced in the present case by a subjective judg-
ment that ro should be zero and by use of an excessive index span (K = 7).

Characteristics of Indefinite Cumulant and Reed-Muench Methods. Objections,
closely resembling those made to Kiirber's method, appear to discourage any
attempt to base methods upon two indefinite cumulants, the sum of all values of
r, for i < c and the sum of all values of si for i > c.
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Briefly these sums may be denoted by 2 r and Z 8 where
c

c c h

[9] 2r= ri andEs= sS
i-1 c i-c

provided it is assumed that ri = 0 for i < 1 and that 8; = 0 for i > h. The methods employ
e c c'I c'I

[10] 'O= r/(E r + E s) and r/( r + E s) where c' = c +1
c c

to obtain an estimate m' of the median-effective dose M by linear interpolation between
points, (log DC, ,,) and (log D., ,4), to find the "endpoint", Oog m', 0.5). It is noteworthy
that here " = '" . Obviously, the results of this procedure could be greatly biased by
not having ni - n, a constant; although substitution of pi for ri and qi for s; throughout
would remove this objection.

Reed and Muench (25) adopted the condition ni = n, and specified that the data be
abridged so that the calculation of the "endpoint" is based on data from an equal number
of dosage values (D;) on each side of it. This specification is essentially equivalent to
limiting the range of the index i in the smmations to the inclusive interval (c + 1 -k,
c + k) for an arbitrary integer k, provided that c is such that 6.0.5 S 44. Strictly inter-
preted, the equality signs in the last expression admit an exception to the provision of
Reed and Muench, "...an equal number of dilutions is taken on each ude of the endpoint.'!
However, their statement (25) is immediately followed by an example that appears to
condone even further departure from a strict interpretation of the provision, although the
data there given would have yielded the same result either way.

The Reed-Muench method appears to be placed in the most favorable light
on the suggested basis, which may be given explicitly as follows:

I= r.+1-k + --- + r.[1)e r,+1-k + *d + r, + 8. + *- + e+*' and

it r.+l1k +* - + rc+1
rC+1. + * + r¢+i + 8c+1 + + sc+k

and the median-effective dose M is estimated by the "endpoint" value in
given by

0.5 - 4
[121 log m' = log D, + d- ,, - ,, provided 4' < 0.5 .44'.

Thus, if the range of the index i is great enough in the protocol, for a given value
of k there may be determined a succesion of intervals, (44, 4"), one of which
may be found to contain 0.5 and thus serve in evaluation of m' in relation [12].
Unfortunately, the successive intervals, (441 I4') and (44' X 44") where c' = c + 1,
overlap except in the case where r,+1-k = Scl+k = 0 and in two trival other
cases where 44' and 4', are both zero or both one. This is readily verified from
the definitions in [11]. Thus there is an almost universal tendency for the Reed-
Muench method to give biased or equivocal results, the latter occurring whenever
more than one of the successive intervals contains 0.5.

A simple example is afforded by consideration of a uniform trend, the absolute antithesis
of erratic data. Thussuppose that ri = i for i 1, ,n - 1;and8- n - r, n- i.
In this hypothetical assay suppose that the doses are successively doubled (d log 2).
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Let M' be the geometric mean of the doses (D,) for i = 1, * , (n - 1); then apparently
M' is the best estimate of M that can be made in this situation on any basis. This is the
value that would be given by the moving-average method with any value of the index span
K and interpolation (or even extrapolation from any admisible part of the data). The
same result would be obtained from all the data by the methods of Bliss, Berkson, and
Kirber (provided that in the last method we use r0 =0 and r. = n, in extension of the data).
However, the Reed-Muench method gives equivocal estimates (i'). The simplest way to
present the results is to give the ratio g' = m'/M'. Thus for a total index span 2k = 4
we have: if n = 10, then equivocally g' 0.823 or 1.215; and if n = 15 then g' 0.617,1.000,
or 1.621. Similarly, for a total index span 2k = 6 we have: if n = 10, then g' 0.878 or 1.138;
and if n = 15, then g' 0.683, 1.000, or 1.463. The purpose here, of course, is to illustrate
the character of the equivocal results, not to indicate the magnitude of relative differences
to be expected in actual use.
In application of the Reed-Muench method to any actual data, following the procedure

indicated by the authors, more than one value for m' would not ordinarily be obtained,
because the first one found would be accepted. A limitation placed experimentally upon
the range of values of Di might prevent recognition of the danger, just as might ignoring
part of a more extensive set of results (deleting data for successive dosage values at either
the top or bottom of the conventional protocol). Obviously, this would be done in either
case at the expense of introduction of some bias according to what range of doses is allowed
to influence estimation of the median-effective dose M, the estimate n' tending to be too
near the geometric mean of the range of doses so employed. Replicate assays made with
the same range of doses would tend to develop in the observer a false confidence in estimates
as a result of apparent precision, if he were not aware of this artificial centrifugal tendency
in m'. Heddn (49), in a recent article suggesting application of the Reed-Muench method
to serologic titrimetry, has given a table in which he cautions against some of the most
prominent points of danger.

Road to Further Modifications of Cumulant Method. It is evident that the
Reed-Muench modification of the cumulant method evokes new defects in
place of those it removes. The new sources of difficulty are a failure in defini-
tion to make 0'' identical with 0'+1, and to have rk such that the range of the
index values involved extends equally far to each side of c, if D, is taken as the
associated dosage value used in the interpolation. DP would then be the geo-
metric mean of dosage values corresponding to values of r, and s; involved in
the definition of O'. This would avoid the vicious overlapping and any obvious
tendency toward biased results. However, it seems preferable to define the
cumulants and O' in terms of p, and q, rather than ri and s,, for the sake of
greater generality; the other forms are readily obtained where ni = n throughout
by substitution of the identical values, pi = r,/n, and qi = si/ni.

Thus, we might redefine the bases of interpolation, 4 and 0, by

[13] pc+l-k + .pc+qc+* +qc1 , and+ =+'k+i

The "endpoint" value m' could be defined by relation [12] in these new terms.
However, this is not the only possible recourse. Indeed, it is not essential to a use of

cumulants that 0 be a cumulant ratio as in [10], [11], or [13]; but we should agree to the
condition that henceforth - 4+l identically. In the last case [13] the underlying idea
is, in accord with that of other cumulant methods, to find or estimate by some form of
interpolation a dose that should be expected to yield a zero cumulant difference; i.e., the
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p-comulat minus the q-cumulant should be zero. This suggests redefinition of #; as some
convenient linear function of the cumulant difference, pc+I-h + ' + pc- (qv + *. +
q._-'+l. Furthermore, as q, = 1 -pi identically, we note that
[141 pe+i-k + *- + p. - (q, + - + q,-1+k) = pc+ -k + + pe-i + 2pc

+po+i+* +p*.j+&k.
Accordingly, it would appear convenient to redefine

= pc+l-k + * + pcl- + 2pc + pc+l + + pc-i+k-
2k

As agreed, 0. is defined as identical with X+1. Interpolation formally by relation [121
gives the same "endpoint" as that for a cumulant difference of zero as suggested above.

Formula [15J may be recognized as that for a weighted moving average, manydifferent
forms of which have been employed as graduation formulas (29a). It differs from the simple
moving average designated by p' in relation [31 only in giving double weight to p. in the
middle term of the numerator, and in a limitation to use of odd index spans, K 2k -1.
The denominator, of course, is the sum of the weight coefficients. If we define[16] ~~(k -pe+1-k + *+ p,e 1+ 2pe + pe+1 + * -+pv_-+k)[161- 0

Pc+ik + pc+ -pc +-pcI-k
then the interpolation (provided 0 S 0 :S 1) is given by

171. log m" - log D. + d*@,
hereinm" is the estimate of the median-effective dose M. It should be noted that the test

for interpolation and the calculation are more difficult than in use of the simple moving-
average formula [6]. Furthermore, the restriction to use of an odd index span (K = 2k -1)
is awkward; and no compensating advantage is apparent.

An Equivalence of Simple Moving-Average and Modified Cumulant Methods.
If we take a further modified cumulant difference, Pc+1-k + ... + Pc -
(qc+i + - - * + qc+k), and associate this with the geometric mean of dosage values
involved in obtaining these data (which is equivalent to what was done in the
preceding modifications); then this dosage value is readily found to be
V)5¢.7b+l . Then, proceeding in steps analogous to those leading from relation
[14] to- [16] and [17], we are led-to relations identical with formula [6] for the
simple moving-average method except that K = 2k and thus is always even.
Now, if we take another modification of cumulant difference, pc+l-k + ... +

Pc-i + - - (qc+l + * * + qc-i+k), and associate this with the geometric
mean dose involved (De); again we are led by analogous steps to the same formula
[61, but this time find that the index span is always odd, K = 2k - 1. Thus
it appears that a process of successive modification of cumulant methods, in
attempts to remove evident defects and avoid unjustified awkwardness, leads
directly to the simple moving-average method that has been proposed above on
the basis of immediate intuitive appeal.

The approach from the point of view of cumulant differences lies along an easily followed
tril as far as the next to last modification. There the appearance of slight difficulty in
thie associated dosage value (VWD+) might have discouraged further progre as might
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the apparent introduction of complications with the companion modified cumulant differ-
ence; but, only a little further along, all such difficulties are left behind as we arrive at the
same situation previously attained by the simpler approach.

Use of Elaborate Graduation Formulas and Curve Fitting. In the special case
where k = 2 in relations [16] and [17] we have the equivalent of application of
simple moving averages for K = 2 to like moving averages in [3], i.e., a double
graduation. This and many other forms of weighted moving average as well
as other graduation formulas (29a) might be used advantageously in some situa-
tions. Indeed, methods that involve fitting of curves of given type (3-20, 30)
may be regarded as elaborations of such methods, useful to replace a basic method
such as that now proposed, where there is good reason to expect use of the more
elaborate method to lead (without introduction of intolerable bias) to important
improvement in precision or to permissible abbreviation of tests (3-12). Of
course, other percentiles may be used as "endpoint" instead of the median, but
usually less efficiently. However, it may not be readily apparent what type of
curves should be useful. Wilson and Worcester have thus been led to consider
(30) a generalization of the curve fitting problem in bioassay.

The investigations by Hussey and associates (31-35) of effects of radiations on biological
systems furnish an illustration (5a), both for quantal and gradational assay, of strange
characteristics that may be encountered in a dosage-response curve. Furthermore, these
studies provide an interesting example of a mistaken attempt (by another writer) to approx-
imate the curve involved by fitting a fairly simple increasing function of the irradiation
interval (t) to the average duration of the prepupal stage (0), employing data of the first
report. This is discussed in one of the later papers (33), further exploration having clearly
demonstrated that such dosage-response curves on the contrary rise to a maximum value
of 4, and then fall to an almost level plateau in all cases investigated (32, 33). In the later
article (33) the median is used as average in preference (5a, 13, 36) to the mean, and in the
second text-figure (reproduced elsewhere (5a)) one experience is illustrated by a combined
graph of median response 4 and a class-frequency diagram of individual responses corre-
sponding to each irradiation period t that was employed. A quantal assay system could
be imagined as based on responses found up to any convenient value of 4 (the abscissa of the
graph); but it is easy to see how an unfortunate choice, say 4 = 7.5 days, would lead to
ambiguities in tests and insensitivity with change in dosage above 160 minutes under the
given conditions.

That difficulties of this sort may be encountered in immunologic assay is illustrated
in the studies of mouse protection tests by Goodner and Horsfall (37). With certain pneu-
mococcus antisera given to test animals in varying amounts to counter a standard dose of
pneumococcus culture (sufficient to kill practically all animals otherwise) they found that
over part of the range increased protection appeared to result from increased antiserum
dosage, but with a further increased dosage a maximum protective effect apparently was
passed, for beyond a certain point increased dosage appeared to give less protection. If
such a system must be used in assay, then care must be taken to choose conditions so as
to deal with the required branch of the fundamental curve or change conditions so as to
eliminate the peculiarity.
An interesting case in point is presented by some of the complement-fixation systems.

We have indicated that the amount of complement M required for 50 per cent hemolysis is a
linear function of the amount of a given antiserum used in a reaction with the essentially
optimal amount of antigen. With some systems (e.g., the tuberculosis tests) it is enough
that the amount of antigen be in considerable excess, but with others (e.g., tests for syphilis
or pneumococcus antibody) there is an amount of antigen that gives a maximal fixation
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reaction with the given amount of antiserum and less fixation is obtained with either more
or less antigen. Fortunately, in the syphilitic system the curve does not have a sharply
defined maximum but a fairly broad range in which nearly maximal effects are obtained.
Still more fortunately, the maximally effective amount of antigen depends essentially on
the required maximal M, which in turn is approximately dependent on the amount of anti-
body present, and not capriciously on the particular qualities of the serum otherwise.
Accordingly we may set up (as in the routine test for syphilis) three tubes containing respec-
tively 3, 6, and 12 units of complement and in each the amounts of antigen appropriate if
the value of M falls within range of estimation from the resulting p found.

Features of Weighting Systems in Curve Fitting. At this point it seems appro-
priate to examine at least the approximate influence of weighting systems com-
monly employed in the curve-fitting process, but in approaching this subject,
perhaps like Berkson (19), we should pray for guidance. At least we may
hope that the discussion will serve as a stimulant to others. As previously, we
take log D as abscissa in both the fundamental and transformed coordinate
systems. Accordingly, let w be the weight assigned to the squared vertical
deviation of a point (observed or "corrected") from the fitted line, and assume
we ape to minimize the sum of the weighted squares in the fitting process.
The T(,) transformation is equivalent to a one-way stretching of the coordinate

plane verticaJly in either direction from the p = 0.5 horizontal. The factor for
the total stretching from the transformation of a point not on that horizontal is
[T(p) - T(o.s)V/(p - 0.5). As previously, it is convenient but not necessary to
have T(,) an increasing function of p; then this total-stretch factor is positive.
However, the local distortion or stretching factor, which we shall denote by 1E,
is given by the derivative of T(p) with respect to p. Thus, with base e logarithms

if T(p) = log P then E = pq; or if T(,) = either the normal deviate or the

probit of p, then E is the corresponding ordinate (z) of the normal curve. Use of

logarithms to any other base (say a) instead with T(,) = log 1 P would give

E = pq -log. e, a constant times the value E = pq for natural logarithms. Of
course, any set of weighting coefficients may be multiplied by any constant
throughout without essential alteration in the result of the curve fitting.
Now, let w' represent a weight we might agree to give to squared deviations in

p from the fundamental (log D, p) curve approximation, e.g., w' might be taken
as the reciprocal of the estimated variance of p in random sampling, then w' -

n/(pq). Hence we might expect w = E2w', and approximately this is the weight-
ing system used by Bliss (14) and Berkson (19, 20) with the appropriate inter-
pretation of E, although adjustment of the transformed data may be in-
volved also.

Obviously, the corresponding negative transformation, - T(,) , gives the same
weighting coefficient w = E2w'. Thus for the logit transformation the weighting
coefficients may be taken as w - np2q2/(pq) = npq. It is true here and also,
but less markedly, with the probit system that less weight is given to points in
the transformed coordinates the further p is from 0.5; but we should guard against
the fallacy of supposing that therefore original points (log D, p) are given less
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weight according as p is remote from 0.5. Indeed, the opposite is clearly evi-
dent from the derivation as Garwood (16) and Berkson (20) have emphasized.
As has been noted, the difficulty with p = 0 or p = 1 in the observations has

been treated (14, 15, 20) by adjustment of data. Strictly in accord with the
principle applied, all points should be adjusted (14). The adjustment is based
on a straight line fitted by inspection or otherwise to the transformed points or
successive approximations by straight lines generated from that beginning. The
"corrected" or "fictitious" points employed by Bliss (14) and Fisher (15) are
taken so that the weighted sum of squared deviations from the provisional line
is , [n,(pi - p )2/(ptqt)], where p' is the corresponding p-value on the provi-
sional line and q' = 1 -p; and the proces is aimed at finding a line which
makes,this sum a minimum, and is essentially equivalent to fitting an integrated
normal curve (16) to the points in the fundamental form so as to min mize this
sum. The logistic function instead of the integrated normal curve may be
employed in a similar manner (17, 18, 20).

It is at least of theoretical importance to note that, apparently, the conditions for con-
vergence of the curve-fitting process have not been carefully specified. Good examples
have been given, especially by Garwood (16), to suggest the nature of the processes in-
volved; but a general theorem of convergence has not been proved for any set of points
(log Di, pi), or with certain specified exceptions, where we are required to fit a given curve
or a straight line in transformed coordinates in the indicated manner. Indeed, the general
theorem without such exceptions can easily be disproved, and for this it is sufficient to cite
a single example of failure. Thus for any set of doses, DI < D1 < D, or more specificaly
Ds - 2D2= 4D1, let the values of pi be givenbyp -0 < p2 < 1, and ps= 1. In this
example the method of Bliss and Fisher would not direct us toward any line of finite slope
and the estimated median-effective dose would appear to be D2. A second example with
just the first two points instead would yield essentially the same result, the estimate of M
being D2. In either case, this would be so regardless of the value of p2.

The present purpose is not to determine the limitations of these methods, but to indicate
that the issue should be investigated at least to the extent of specification of some definite
practical limitations. Of course, no method of estimation of median-effective dose should be
applied to data where pi is constant in the given experience (49), nor if for a given i we have
pi+s = pi-i throughout the data utilized, nor without restriction of range to exclude the
influence of a possible indefinite extension of dosage values with the true p;i approaching
asymptotically some value other than zero or one. However, the examples cited above are
not of that type and demonstrate that other exceptions are required. An immediately
suggested expedient might be based on the fairly common practice of excluding all values
of pi that are zero or one in obtaining the first provisional line and requiring thus that at
least two other values of pi remain. Then we might proceed to obtain the second provi-
sional line with exclusion of all points for which the expected value p' (taken from the pre-
ceding line) is not in the interval (0.001, 0.999), and to obtain any successive fitted lines
with exclusion of points for which p' on the immediately preceding line is outside (0.05,
0.95) or some other preassigned interval. Obviously, at least two points must remain to
yield the line. Such a system might overcome some of the indicated difficulties, and ap-
pears to offer only an objective direction of what might be expected to result from
good judgment.

Another difficulty, not apparent in the mathematics based upon the original assump-
tions, arises as a result of infringement of one of the assumptions, made at least tacitly,
that other sources of variation in the observations (log D, p) are negligible with respect to
the variation in p from random sampling. Perhaps we might stretch the condition to
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cases other sources of variation are no more influential (48). However,
as Neyman (12c) has pointed out, this is not necessarily so. Indeed, in any practical situa-
tion, asumption implies that n is not so great as to make the variance of negligible
with respect to contributing variance arising from other sources; and, as contrary cases,

previously the complement-fixation systems where n

2 108 and thus
2NVjq7 S 0.0001. Such conditions effectively undermine the basis on which there has
been established a preference for taking deviations in the given direction. This is not
enough to establish

contrary preference, but certainly throws the question again,
and in such cases invalidates the weighting system described above.

Still another difficulty lies in the use of the index of dispersion,2[n;(pi -p')'/(p q)],
as the basis for approximating a maximum likelihood fit. It is well known (27, 28) that,
especially for small values of n, and for p'. remote from 0.5, the approximations involved
may be poor. Accordingly, with any given data any method so based, such as that of Bliss
and Fisher (14-16), should not be considered even to aim at an exactmaum likelihood
solution, and reference to it as "the exact" method (23) even in quotation marksmay lead
to a false appreciation. However, this deflection of aim does not appear to detract from
the practical excellence of these curve-fitting methods when suitably applied.

Moving-Average Interpolation Viewed as a Basic Method. In certain situation
where it may seem desirable to compare the efficiency of given method of
estimating the median-effective dose M with that of basic method of simple

character, the simple moving-average interpolation may well serve the purpose.
It possesses the most desirable basic characteristics: independence of assumption

about the precise form of the fundamental (logarithm of dosage, relative response
frequency) curve, and use of well-known principles of graduation and inter-
polation in the estimation. As the necessary calculations are simple, it

may be

regarded as the method of choice unless another is shown considerably more
efficient in a given situation. A choice has to be made here, as elsewhere (36a),
between methods whichseem to rest on relatively secure base and others which
involve an apparent risk in further assumption but offer a prospect of gainin
either power or economy both. Comparison of a more aggressive method
with a method more basic in the given sense may seem entirely unnecesary if
other evidence of value may be obtainable (11, 12, 44,45) as has been mentioned
in the discussion of complement-fixation tests. Caution is desired but not

timidity.
Of course, the fundamental curve should be approximately symmetrical with

respect to the median-point (log M, 0.5) at least within the interval (log D.,
log Db) to be well-suited estimation of that point by the linear interpolation

from simple moving averages. However, by suitable limitation of range (made

possible by choice of d, n, and dosage range in the test plan and use of an appro-
priate value of K) good conditions for estimation of M in this way should be
attainable in almost any situation where the notion of median-effective dose is

useful. Indeed, its definition is based essentially on the supposed possibility of
its estimation by the method of simple interpolation, equivalent to the special
case K = 1 in formal use of relation [61. The types of curves (logistic and
integrated normal) most used as approidmtions of the fundamental curve form

are S-shaped symmetrically about the estimated median-point (log M', 0.5);
thus even greater emphasis is placed on a condition that is favorable to use of
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the moving-average method. Furthermore, as Berkson (20) has pointed
out and we have indicated above, both his own method and that of Bliss
and Fisher operate approimately as if to fit a curve (respectively, Athe
logistic and the integrated normal) to the data in the fundamental form
of points (log Di, pi) with a weight proportional to ni/p''i assigned to squared
deviations, (pi - ps)2, where pi is the ordinate of the point (log D,, pi) on
the fitted curve. Thus, these methods give relatively more weight to the
original Oog D, p) points according as they are more remote from the
estimated median-point (log M', 0.5). The simple moving-average inter-
polation method does not do this. Equal weight is given to all points
utilized in the actual calculation except the first and last, which are given
weights no greater-usually somewhat les-automatically dependent on the
value of f as may be seen in the Appendix; and all other points have no weight
except in the preliminary choice of the range (a, b) to be used for the index i
in the interpolation. This feature of the proposed basic method seems at worst
to err on the side of safety. It should tend to make comparative tests sensitiie
to any increase in efficiency resulting from use of a curve-fitting method that
places special emphasis upon the data of points remote from the median-point.

Finally, the writer wishes to make it very clear that he has no intention of
discouraging use of the curve-fitting methods, which appear to have found many
valuable applications.

APPENDIX
ESTIMATES OF ASSAY VARIANCE, BASED ON INTRACLASS DATA

We have noted under relation [6] that as long as f lies in the unit interval the same value
of a is suitable for the required interpolation; i.e., an increment (Af) in f produces d times
as great an increment in log m, &logm = d Af, where d is a constant as previously defined.

Furthermore, the partial derivative of f with respect to p, is readily obtained for any i.
From relation [6], for pi - r./n,, we have

f = pa- * P-l)/(pb-p.), and

f - 2 pa+l -*** Pb) (pb - P) -

Therefore, the partial derivatives are:

Of _ -1_J = -1 for a < i < b;and
clpi pb - pa

K

[A21 aOf _ (f-1) 2 -pg+-a-ndf-i
[A2]Op.(Pp -pI)2 A 7p d

K
Of 2P--p pa-- _ -f
GPb -(pb -pa)2 pa-P
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let Ap, = pi - p ; then Af may be approximated by

[A3] Af '-1.[(1 P- *V APa + &Pa+l + * + APb-1 +.*AP]s

where, is the value of f for the case where pi is replaced by pi throughout formula [Al].
Obviously, the expected value of Af is approximately zero, zf 0; whence the expected value
of (Af)2 is approximately the variance of f, (2&f)i2 of. Assume that &pi is independent of
Ap1 for i d j. Then the expected value of the cross-product is given by

[A41 (zp,)(Ap,) 0 for i $ j

= for i = j.

Accordingly, the variance of f may be estimated by

[A] 2..., 1 [1+1[A5] a-=2(,-)a2J.+ 0+ a
2

b-i *2pb]

By definition, 8i a n;- r;and qi - si/n 1- pi ; and, accordingly, j- 1 -.
The true variance of pi is op2 - pD {/n; as is well known; and this variance may be esti
mated from the sample value (pi), for n, > 1, by

[A6J v;- p;.qi/(n -1).

This is also well known in a more general form; but is readily verified in this special case
(temporarily dropping the index i) from relations based on the point binomial, as follows:

n -1)* =- *pa a,

[A71 where, = n - a; whence, for n > 1,

n = 2). pa-1 -1 = p

Accordingly, the expected value of vi is v, = p;/n =n , the true variance of pi . Thus,
as the variance of log m is approximately d2 times that of f, we obtain from [A5] and [A6]
the estimation formula,

2

[A8] u logm- (b d [(1 - }) * V. + Va+l + + Vb-I + Vb]

wherein, unfortunately, there still remain three quantities (Pb , pa , and I) that are not given
by the assay experience, except that they may be approximated by the corresponding sam-
ple values (Pb , pa , and f). However, the additional error in approximation thus induced
may be so small as to be negligible, if Prb - 1 and pa. 0, in comparison with other sources
of error in the approximation [A8]. Estimates of variance obtained in this way are not
adapted to such refined tests of significance (27, 28) as is the variance estimate 8'2 defined
in the text in accord with Rider's (28) notation. Of course, if replicate asays have been
made under essentially the same conditions, then composite estimates may be made or data
may be pooled under some circumstances for the purposes.

In the case of constant ni = n > 1, relation [AS] may be reduced to

[A9] alogm - ad -f)2 _ raSa + ra+18a+l + + rb-1.Sb-I + f2 * rb8b
=b - ra n/.-.
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where, of course, the standard deviation estimate is positive or zero; the same value is
given in this case (ni = n) with r, replaced by p, and 8, by q, throughout.

However, in a consideration of possible test-plan improvements, with regard to the in-
fluence of choice of values for n, d, and the moving-average index span (K = b - a), it is
convenient to have in mind the form derived by substitution of the hypothetical true vaxi-
ance, iji/n, for a,, in relation [A5]:

[A10] og in d /(1 -2*paa + Pa+ia+1 + + Pb-iqb-1+P2*Pbqb
pb - Pa n

All the indicated approximations are asymptotic as ni -. c, for i = a, *, b. As indi-
cated in the main text, these formulas are applicable only where unrestricted random sam-
pling is employed or where an estimate of relative efficiency in use of other sampling technics
is to be made in default of control experience with unrestricted random sampling. In the
latter case direct estimates (8s2) of variance of log m from replicate assays with the given
sampling technic are required for the comparison; they are desirable in any case. The
indirect estimates obviously are insensitive to technical errors such as those arising in use
of a syringe, or in failure to have comparable environmental conditions at the time of ad-
ministration of the test dose to subjects and thereafter to the end of the observation inter-
val. Many such influences are likely to be greater when assays are not performed simul-
taneously. Nevertheless, non-simultaneous replicate assays may be preferred in order to
avoid too great reliance on results that may be abnormally affected by a temporary condi-
tion of the colony of test subjects. An example might be given by replicate assays where
two reagent solutions are tested for relative potency, ostensibly of a given agent. There
may be other materials present in different relative amount in the two solutions and sensi-
tivity of test animals (subjects) may differ from time to time, not only with respect to the
agent in question but with respect to the other materials also. This would be an unfor-
tunate situation, of course, but to remain ignorant of it would be more unfortunate. Ac-
cordingly, non-simultaneous replicates may seem preferable if such influences are suspected.
Likewise, it seems usually preferable to compare reagent preparations with a standard
(4, 5, 11, 12) agent rather than accept the reactions of a colony of subjects as a standard.
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